
Kinematics and material functions 
for shear flows
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Always positive It can be positive 
or negative

These flows are 
called 
homogeneous.



• It is the simplest flow field
• It represents various, more complex laminar flows
• The stress tensor has a simple form: 2x2 nonzero entries
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3. Stress Growth
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7. Constrained Recoil after steady Shear Flow
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At low shear rates the viscosity is independent of the 
shear rate. It is called zero shear rate viscosity ηο.
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Viscosity of LDPE melts at various temperatures
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Polymer melts
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The intrinsic viscosity [η] of polystyrene in various solvents, as 
α function of a normalized rate of deformation, β.
[η]ο: zero shear value, ηs solvent viscosity.

c: polymer 
concentration
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Polystyrene solution
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Polystyrene solution
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Polyisobutylene
solution
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Linear elastic 
behavior

Polyisobutylene 
solution
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δ: phase difference

“In phase” with 
the applied 
displacement 

Fluid
δ=90

Solid
δ=0 “Out of phase” 

with the applied 
displacement 



Viscous fluid

Elastic solid
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Viscous behavior Viscoelastic 
behavior

Elastic behavior

G'' >> G' G'' > G' G'' = G' G' > G'' G' >> G''
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The amplitude of deformation can be chosen arbitrarily, 
but it should be small enough.
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frequency and polymer structure



Non-linear region

G = f(γ)
In the linear region
G is constant
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Concept of Linear Viscoelastic Region

“If the deformation is small, or applied sufficiently slowly, the 
molecular arrangements are never far from equilibrium.  The 
mechanical response is then just a reflection of dynamic processes at 
the molecular level which continue constantly, even for a system at 
equilibrium.  This is the domain of LINEAR VISCOELASTICITY.  The 
magnitudes of stress and strain are related linearly, and the 
behavior for any liquid is completely described by a single function of 
time.”  (Bill Graessley, Princeton University)

Reference: 
Mark, J.,et.al., Physical Properties of Polymers, American 
Chemical Society, 1984, p. 102.
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For a cycle the period is given by

For

RC-3 polybutylene Mw=940,000 Mw/ Mn<1.1, Tg=-99
oC
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At the limit of low frequencies 0

At low frequencies the elastic behavior is weak
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6. Creep
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7. Constrained Recoil after steady Shear Flow
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The shear stress is 
imposed and we 
measure the 
deformation
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• Shear creep: A stress starts to be applied at t1. The 

deformation γ(t) is plotted as function of time

• Recoil: Stress is zeroed at t2, and deformation γ(t) is 

measured as function of time.
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– For t>t1 the deformation is constant
– For t>t2 the deformation is zero

time time

– For t>t1 the rate of deformation is constant
– For t>t1 the deformation increases in time
– For t >t2 the rate of deformation is 0

t1 t2 t2t1

time t2t1

Elastic Material Viscous Material

Deformation
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time

Recoverable 
deformation

recoil

Rate of deformation 
reduces up to a 
constant value. 

Viscoelastic fluid recoils, and 
reaches at a steady state, having a 
permanent deformation.
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At steady state

Steady state 
compliance

Compliance

the flow ability of a material
as a response of an applied 
stress (~ 1/ (shear rate)  )
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At large times, the compliance exhibits a linear variation
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• After the imposition of creep, the applied stress is zeroed
• Elastic and viscoelastic materials will recoil in the opposite 

direction of the creep
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As function of t

As function of t’
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5. Step strain in shear
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• Deformation is not a flow, unless the material is viscoelastic.

• If we impose an elastic solid in such a deformation, we can 
calculate the shear modulus as G.
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Shear modulus
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• Shear stress is decreasing
function of time.

• In small deformations (in 
LVE), the ratio stress to 
deformation is only 
function of time.

• It is called shear modulus
G(t):

G(t) = τyx(t)/γο

Log time0

Shear deformation γο can be 
imposed via the application of
a large deformation rate in a 
short time step

too  



Kinematic for step 
strain in shear

0

0 0

0

0

o

t

( t ) lim t

t


  







  
 

Relation between deformation 
and rate of deformation in 
shear flow:
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the 2nd normal stress 
difference



Viscoelastic relaxation modulus of flexible linear polymers.

Polym J. 2009, 41(11), 929. 
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For small deformations
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Lodge-Meissner’s rule:

LDPE
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Bird, Armstrong, Hassager (1987); Dealy & Wissbrun (1990)

They are valid 
in the linear 
elastic region
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Ψ1 η

k varies between 2<k<3, and can be calculated 
with a fitting procedure

Ψ1 Ψ+

η η+


