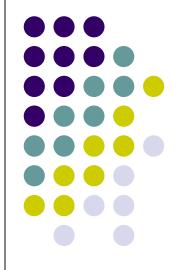
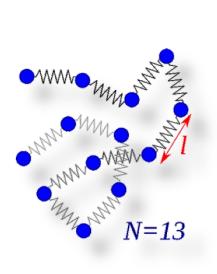
Introduction to Rheology of complex fluids Brief Lecture Notes

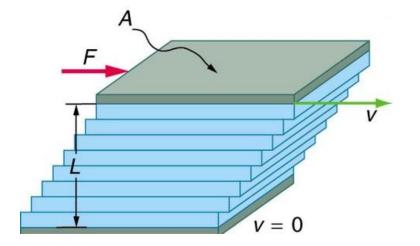
Kinematics and material functions for shear flows



Contents



- Introductory Lecture
- Simple Flows
- Material functions & Rheological Characterization
- Experimental Observations
- Generalized Newtonian Fluids
- Generalized Linearly viscoelastic Fluids
- Nonlinear Constitutive Models

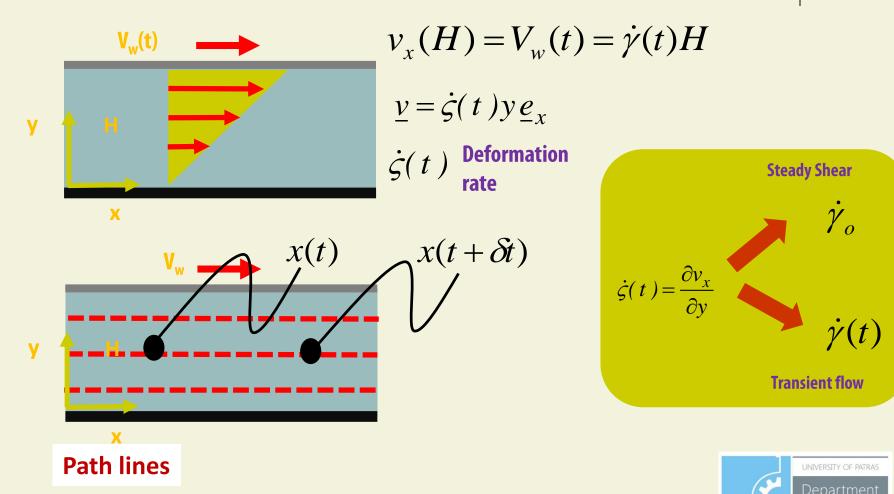


Kinematics of Couette flow

Couette flow in parallel plates

Of Chemical

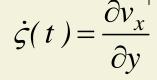
ChemEngUF



Rate of deformation tensor for shear flow

Velocity Fields

 $\underline{v} = \dot{\varsigma}(t) y \underline{e}_x$



Rate of deformation tensor

$$\dot{\gamma} = \begin{pmatrix} 0 & \dot{\zeta}(t) & 0 \\ \dot{\zeta}(t) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Rate of deformation magnitude

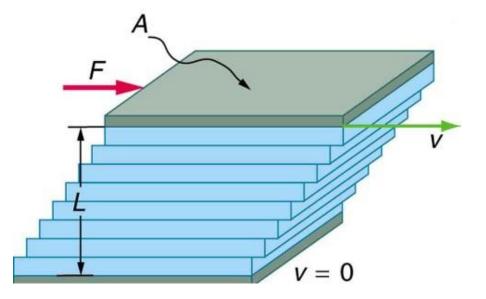
 $\dot{\gamma}(t) = \left| \dot{\underline{\gamma}} \right| = \left| \underline{\nabla}\underline{v} + (\underline{\nabla}\underline{v})^T \right| = \frac{\sqrt{\dot{\underline{\gamma}}} \cdot \dot{\underline{\gamma}}}{2} = \dot{\zeta}(t)$

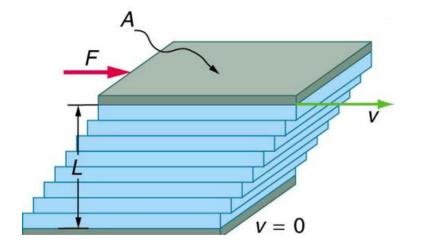
Always positive

The rate of deformation may depend on time, but not in space. These flows are called homogeneous. It can be positive or negative

Why shear-flow is a standard flow;

- It is the simplest flow field
- It represents various, more complex laminar flows
- The stress tensor has a simple form: 2x2 nonzero entries





Shear Flows

All possible shear flows 1. Steady shear flow $v_x = \dot{\gamma}_o y$ Y X 2. Small amplitude oscillatory shear Y

John Tsamopoulos – Fluids Lab – Department of Chemical Engineering – University of Patras

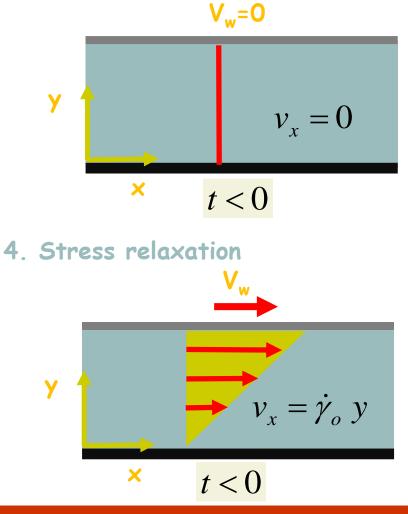
X

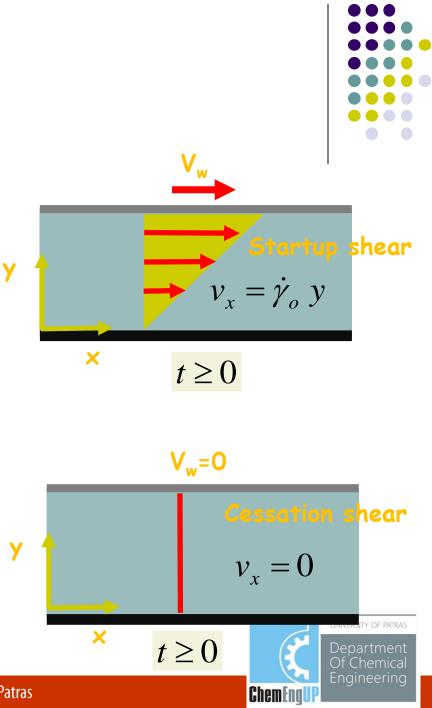
Velocity field

$$v_x = \dot{\gamma}_o \cos(\omega t) y$$

All possible shear flows

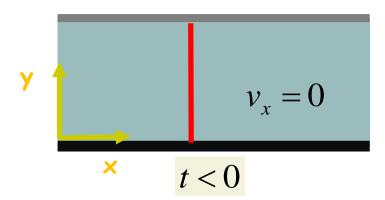
3. Stress Growth



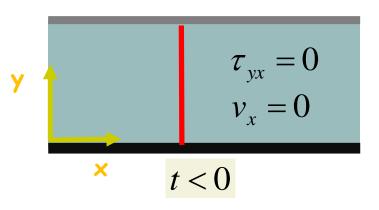


All possible shear flows

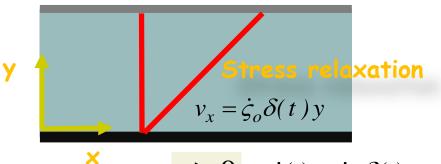
5. Step strain



6. Creep



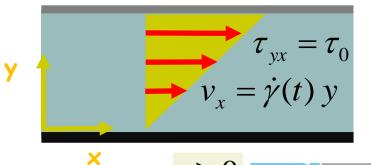
UNIVERSITY OF PATRAS Department Of Chemical



 $t \ge 0 \qquad \dot{\varsigma}(t) = \dot{\gamma}_o \,\delta(t)$

ChemEnaUF

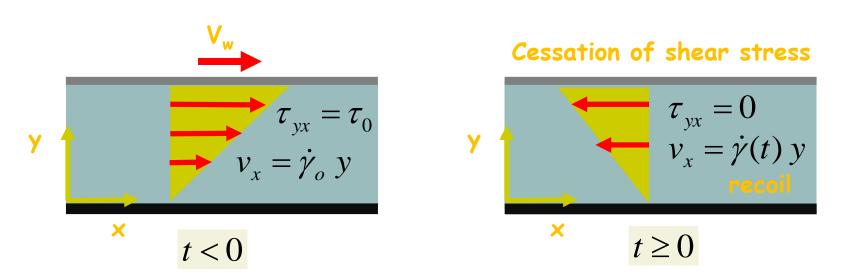
Fixed shear stress

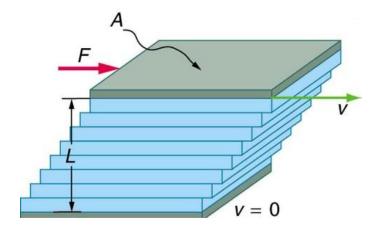


 $t \ge 0$

All possible shear flows

7. Constrained Recoil after steady Shear Flow





Steady Shear Flow

Steady shear flow

Velocity Field $v_x(x, y, z) = \dot{\gamma}_o y$ $v_y(x, y, z) = 0$ $v_z(x, y, z) = 0$

Material properties

Viscosity

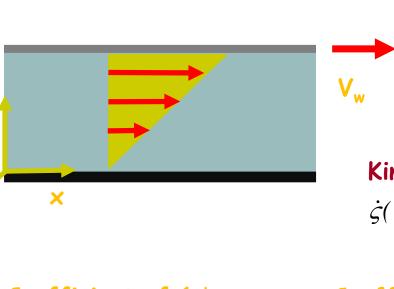
Coefficient of 1st normal stress difference

$$\eta = \frac{\iota_{xy}}{\dot{\gamma}}$$

 $\eta = \eta(\dot{\gamma})$

au

 $\psi_1 = \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}^2}$ $\psi_1 = \psi_1(\dot{\gamma})$



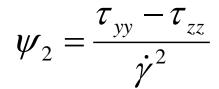
Notation

, 1,2,3 ↔ x,y,z

Kinematics

 $\dot{\zeta}(t) = \dot{\gamma}_o$

Coefficient of 2nd normal stress difference



$$\psi_2 = \psi_2(\dot{\gamma})$$

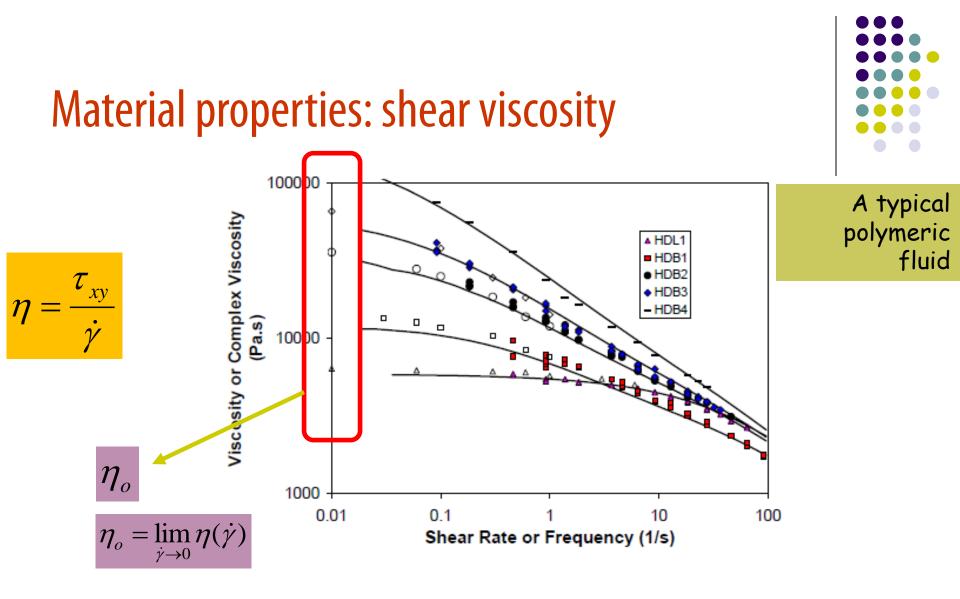
UNIVERSITY OF PATRAS

Department Of Chemical Engineering

ChemEnal

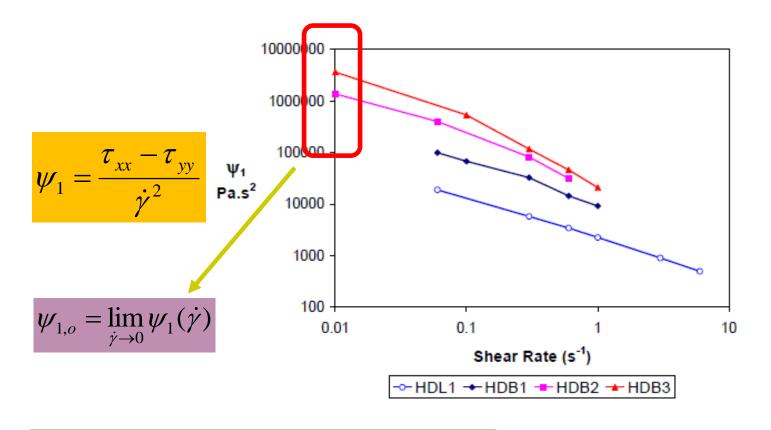
John Tsamopoulos – Fluids Lab – Department of Chemical Engineering – University of Patras

Z



At low shear rates the viscosity is independent of the shear rate. It is called zero shear rate viscosity n_0 .

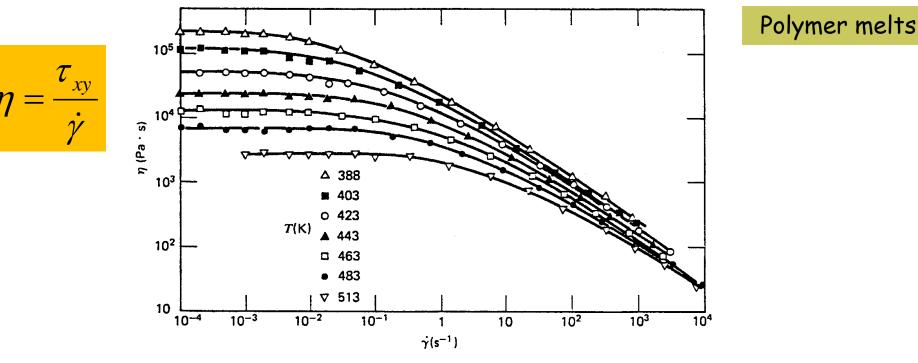
Material properties: Ψ_1



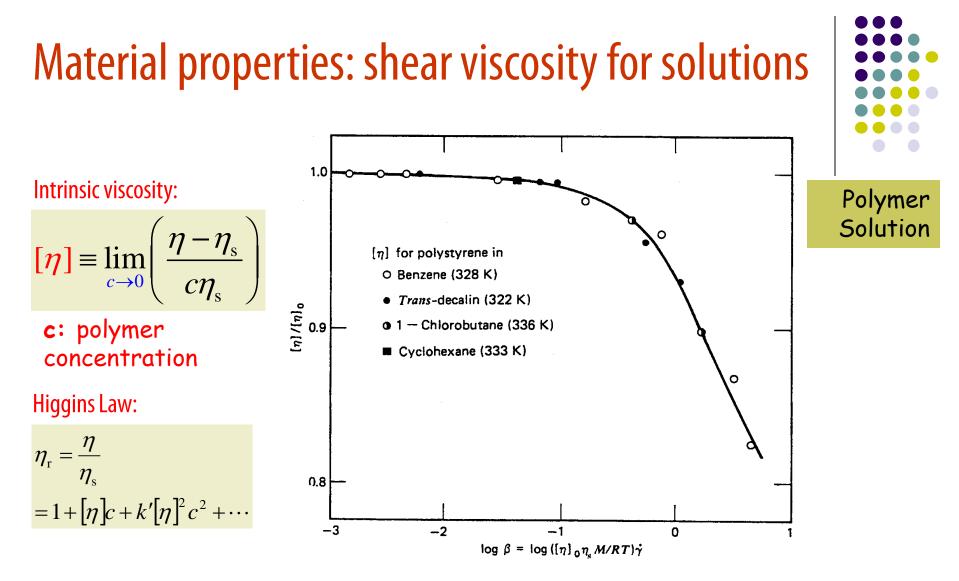
A typical polymeric fluid

For Newtonian Fluids $\psi_1 = \psi_2 = 0$

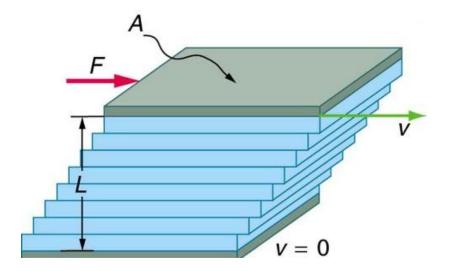
Material properties: shear viscosity for melts



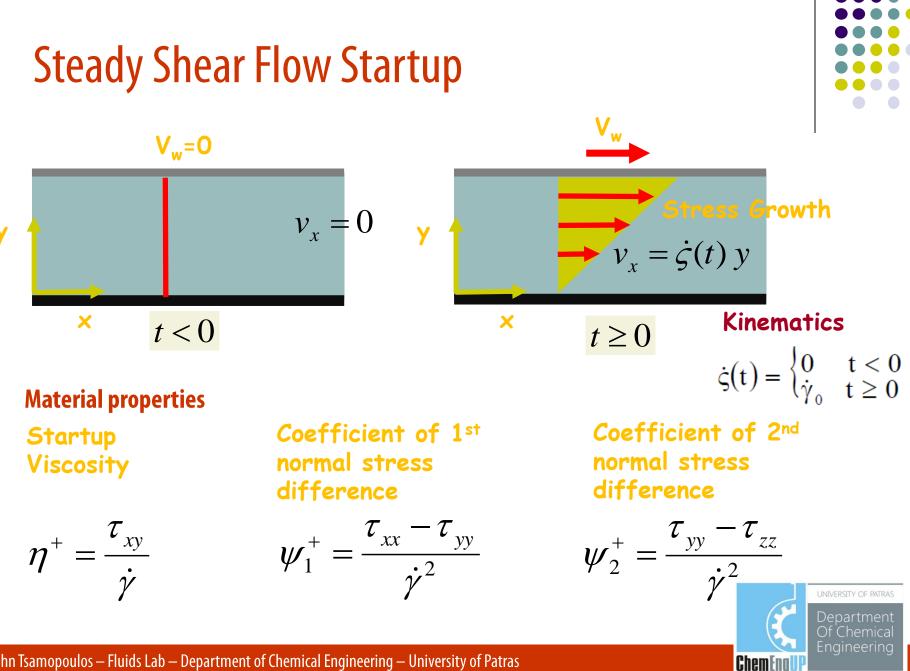
Viscosity of LDPE melts at various temperatures

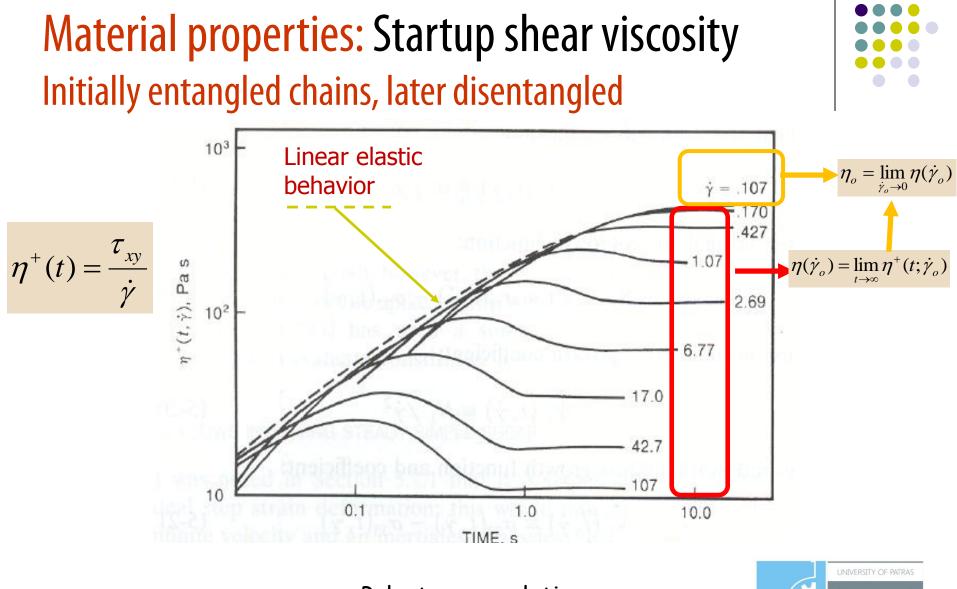


The intrinsic viscosity **[n]** of polystyrene in various solvents, as a function of a normalized rate of deformation, β . [n]_o: zero shear value, n_s solvent viscosity.



Startup of Steady Shear Flow or Stress Growth





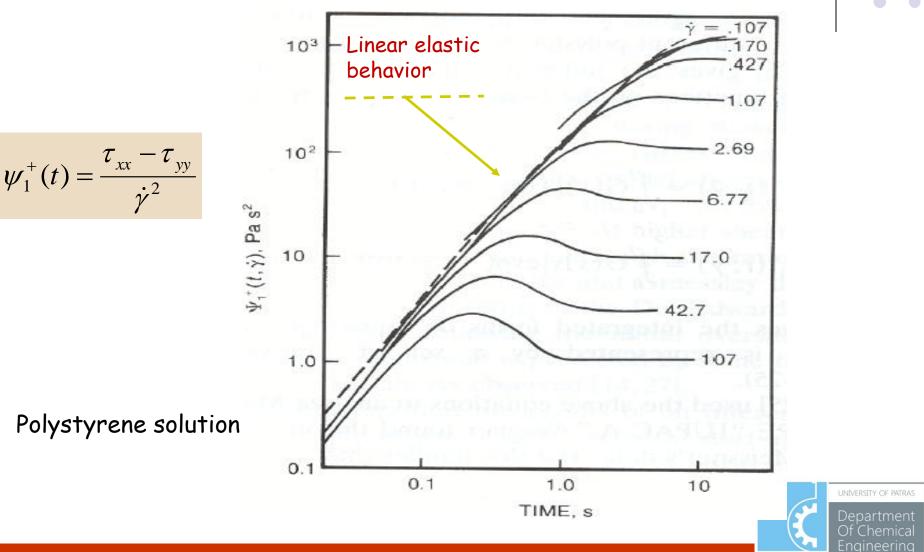
Polystyrene solution

Departmen

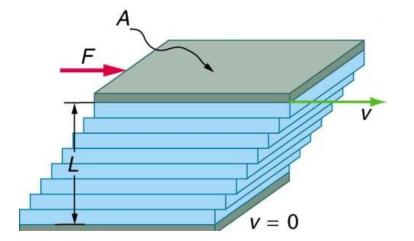
Engineering

ChemEnall

Material properties: Startup Ψ_1^+

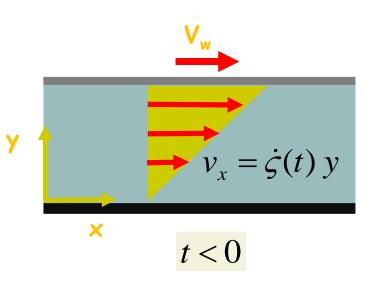


ChemEngUP



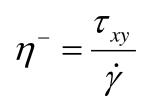
Cessation of a Steady Shear Flow or Stress Relaxation

Cessation of shear flow



Material properties

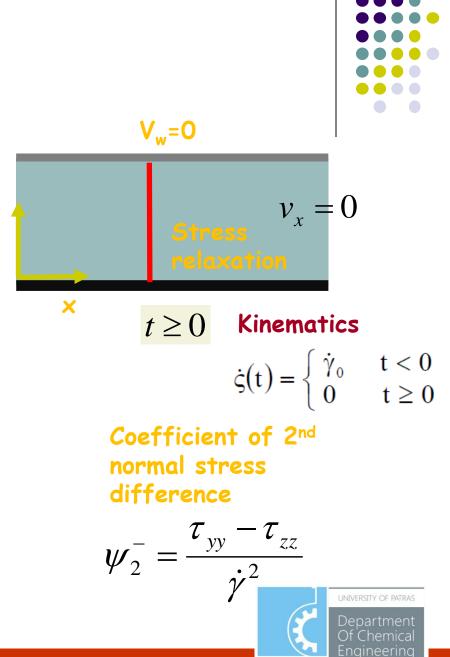
Cessation Viscosity



Coefficient of 1st normal stress difference

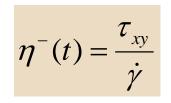
Y

$$\psi_1^- = \frac{\tau_{xx} - \tau_{yy}}{\dot{\gamma}^2}$$

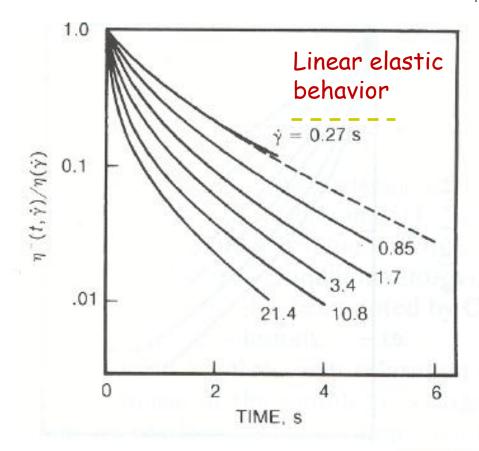


ChemEnaU

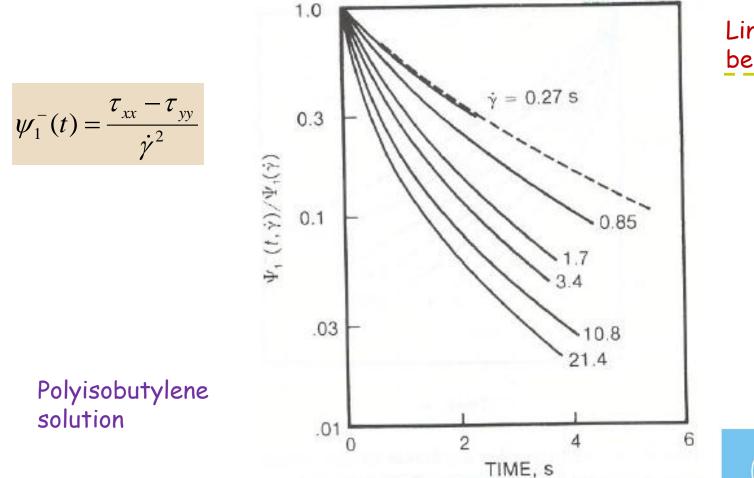
Material properties: Cessation shear viscosity



Polyisobutylene solution



Material properties: Cessation Ψ_1^-

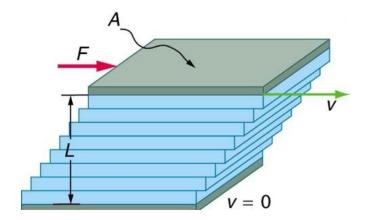


Linear elastic behavior

UNIVERSITY OF PATRAS

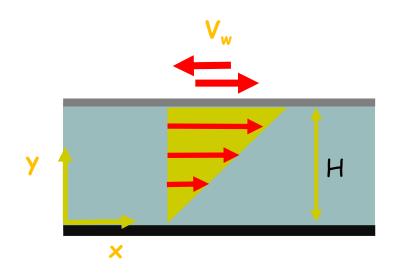
Department Of Chemica Engineering

ChemEngUP



Small Amplitude Oscillatory Shear: SAOS

Small Amplitude Oscillatory Shear (SAOS)



$$\begin{aligned} \gamma_{yx}(t) &= \gamma_o \sin(\omega t) \\ \dot{\gamma}_{yx}(t) &= \omega \gamma_o \cos(\omega t) \end{aligned} \qquad \dot{\gamma}_o &= \omega \gamma_o \end{aligned}$$

$$v_x = \dot{\gamma}_o \cos(\omega t) y$$

Location of a wall-point under steady shear

$$l(t) = V_w t = H \dot{\gamma}_o t$$

Location of a wall-point under oscillatory shear

$$l(t) = H\gamma_o \sin(\omega t) = \frac{H}{\omega} \dot{\gamma}_o \sin(\omega t)$$

Small Amplitude Oscillatory Shear (SAOS)

displacement
$$\gamma_{yx} = \frac{\dot{\gamma}_o}{\omega} \sin(\omega t) = \gamma_o \sin(\omega t)$$

stress

$$\tau_{yx} = \tau_o \sin(\omega t + \delta)$$

$$= (\tau_o \cos(\delta))\sin(\omega t) + (\tau_o \sin(\delta))\cos(\omega t)$$

$$\int_{\delta=0}^{\infty} \ln \rho hase'' \text{ with the applied displacement}} \quad \text{Out of phase'' } \quad Fluid \\ \delta = 90$$

T. phone difference

ChemEngUP

SAOS

Viscous fluid $\tau_{yx} = \dot{\gamma}_o \eta'' \cos(\omega t)$

Viscous behavior, completely "out of phase" with deformation

Elastic solid

$$\tau_{yx} = \gamma_o G \sin(\omega t)$$

Elastic behavior, completely "in phase" with deformation

Complex shear modulus *G*^{*}

$$\tau_{yx} = \gamma_o G' \sin(\omega t) + \gamma_o G'' \cos(\omega t)$$

Storage modulus

$$G' \equiv \frac{\tau_o}{\gamma_o} \cos(\delta)$$

Elastic behavior, in phase with deformation

Loss modulus

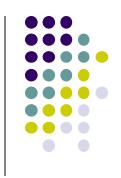
$$G'' = \frac{\tau_o}{\gamma_o} \sin(\delta)$$

Viscous behavior, out of phase with deformation

Complex shear modulus

$$G^*(\omega) \equiv G'(\omega) + iG''(\omega)$$

Complex viscosity η^*



$$\tau_{yx} = \dot{\gamma}_o \eta' \sin(\omega t) + \dot{\gamma}_o \eta'' \cos(\omega t)$$

$$\eta' \equiv \frac{\tau_o}{\dot{\gamma}_o} \sin(\delta) = \frac{G''}{\omega} \qquad \eta'' \equiv \frac{\tau_o}{\dot{\gamma}_o} \cos(\delta) = \frac{G'}{\omega}$$

Complex viscosity

$$\eta^*(\omega) \equiv \eta'(\omega) - i\eta''(\omega)$$

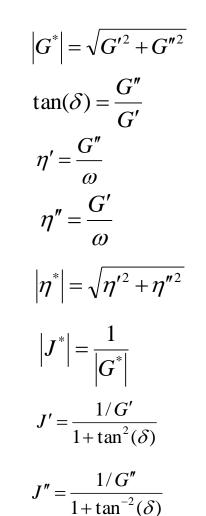
UNIVERSITY OF PATRAS Department Of Chemical Engineering

Material functions for SAOS

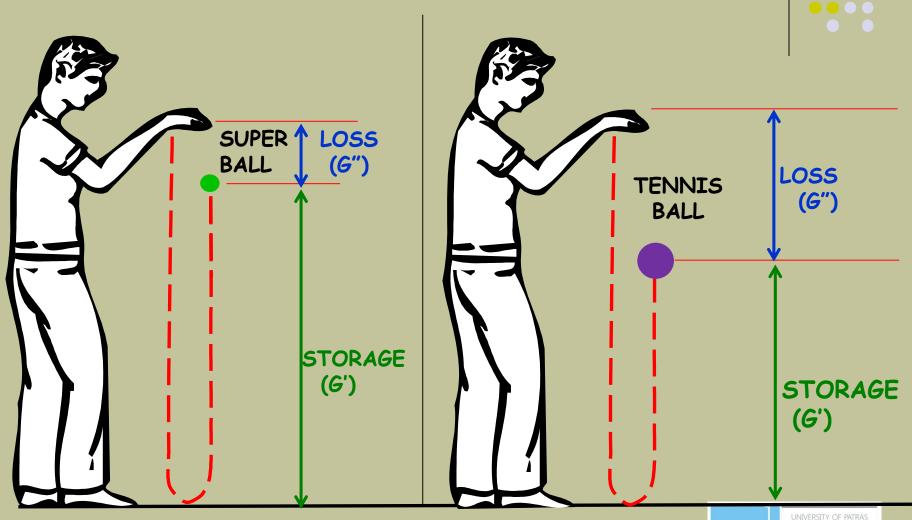
Magnitude of shear modulus Loss angle Dynamic viscosity Out of phase component of η^* Magnitude of complex viscosity Magnitude of complex compliance

Storage compliance

Loss compliance



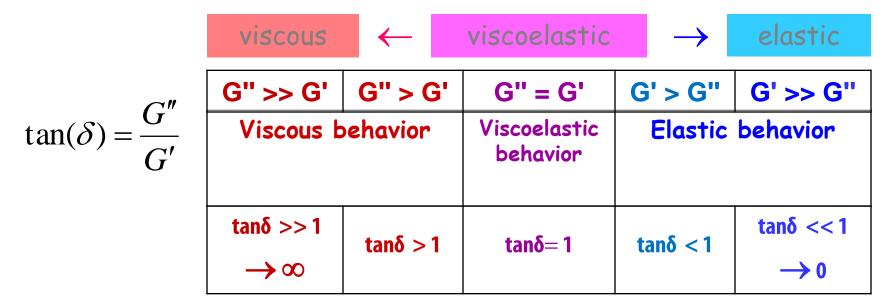
Storage and loss moduli

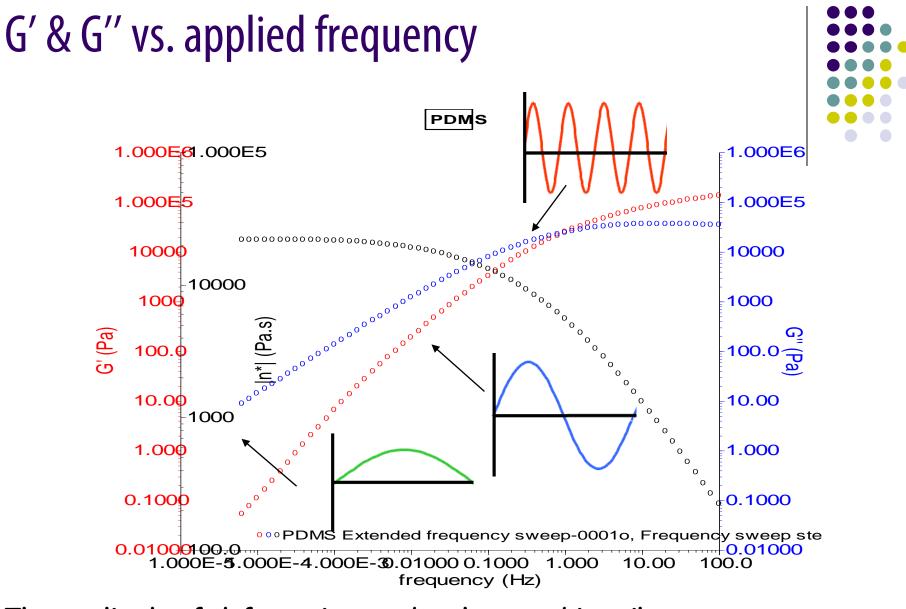


Department Of Chemical

ChemEngUP

How strongly viscoelastic is a material?





UNIVERSITY OF PATRAS

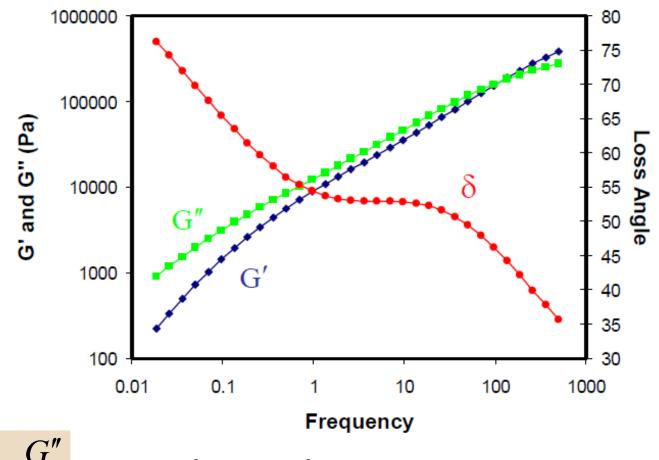
Department

Engineering

ChemEnaUF

The amplitude of deformation can be chosen arbitrarily, but it should be small enough.

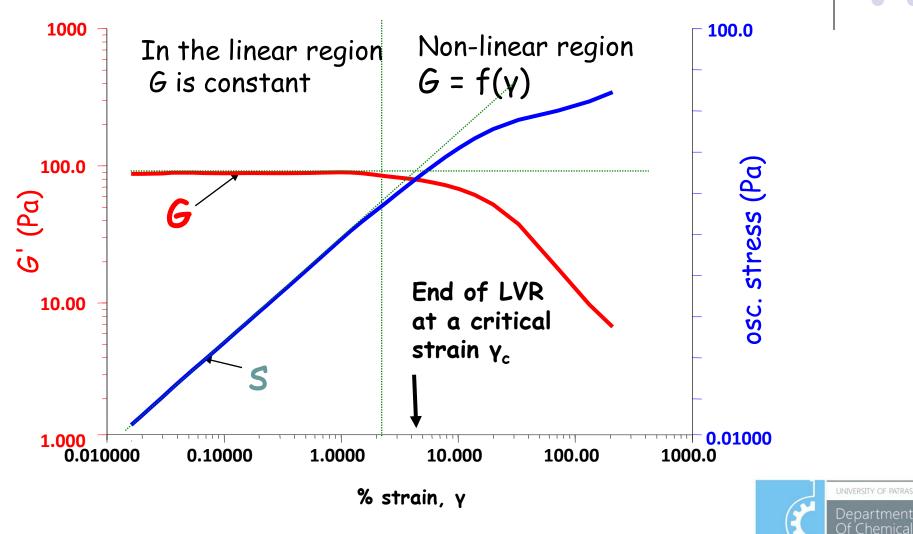
Loss Angle



 $\tan(\delta) = \frac{G''}{G'}$

It is a function of temperature, frequency and polymer structure

Linear Viscoelastic Region (LVR)



ChemEngUF

Linear Viscoelastic Region (LVR)

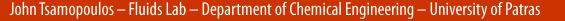
ChemEna

Concept of Linear Viscoelastic Region

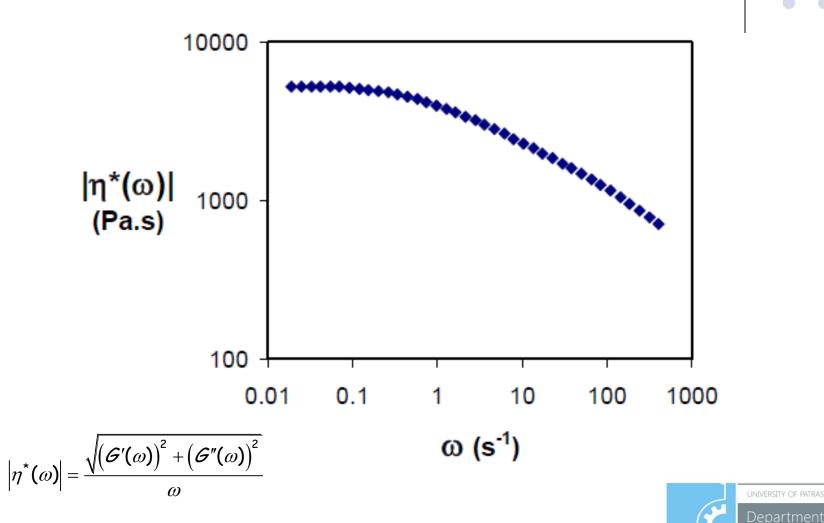
"If the deformation is small, or applied sufficiently slowly, the molecular arrangements are never far from equilibrium. The mechanical response is then just a reflection of dynamic processes at the molecular level which continue constantly, even for a system at equilibrium. This is the domain of <u>LINEAR VISCOELASTICITY</u>. *The magnitudes of stress and strain are related linearly*, and the behavior for any liquid is completely described by a single function of time." (Bill Graessley, Princeton University)

Reference:

Mark, J., et.al., Physical Properties of Polymers, American Chemical Society, 1984, p. 102.



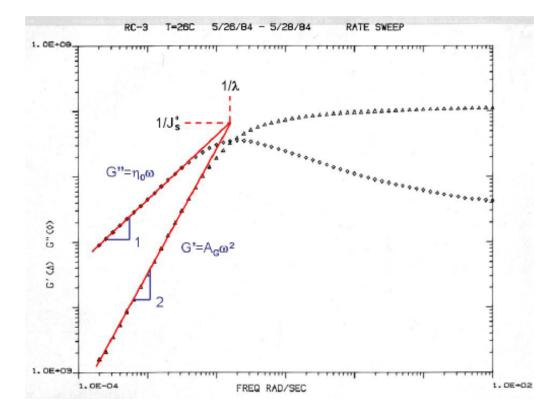
Magnitude of complex viscosity

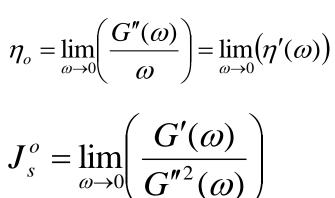


ChemEngUP

Calculation of λ , η_o , J_o^s from SAOS

RC-3 polybutylene M_w =940,000 M_w / M_n <1.1, T_a =-99°C





 $A_G = J_s^o \eta_o^2$

For a cycle the period is given by $2\pi/\omega$ For $\omega = 10^{-4} rad/sec$, $2\pi/\omega \cong 1 day$

Cox-Merz's rule

At the limit of low frequencies $\omega \rightarrow 0$

$$\eta(\dot{\gamma}) = \left|\eta^*(\omega)\right|_{\omega=\dot{\gamma}} = \sqrt{\left[\left(G'/\omega\right)^2 + \left(G''/\omega\right)^2\right]}_{\omega=\dot{\gamma}}$$

At low frequencies the elastic behavior is weak

$$\eta(\dot{\gamma}) = \left| \eta'(\omega) \right|_{\omega = \dot{\gamma}}$$

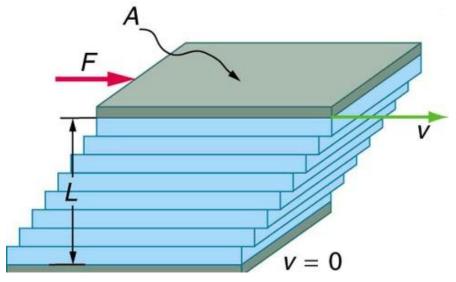
ChemEngUP

Laun's rule

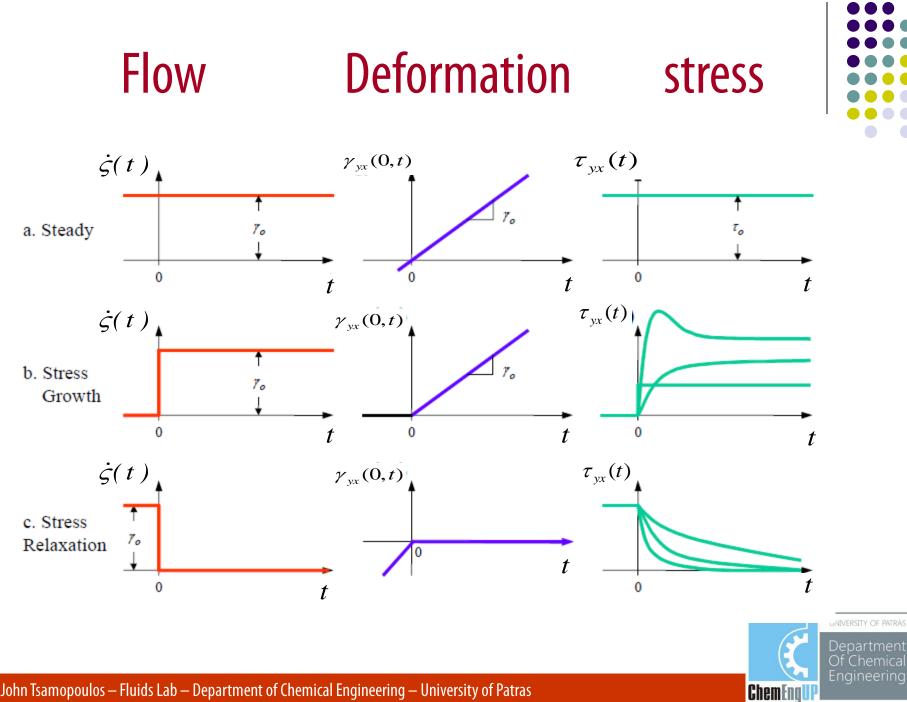
At the limit of low frequencies

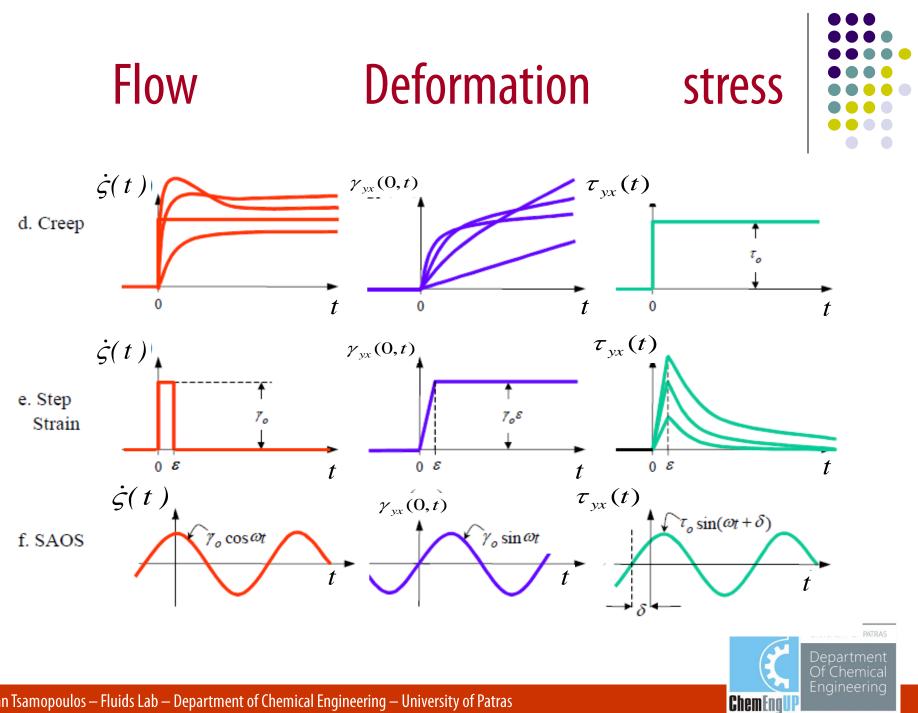
 $\omega \rightarrow 0$

$$\Psi_{1}(\dot{\gamma}) = 2\left(\frac{G'(\omega)}{\omega^{2}}\right) \left\{ 1 + \left(\frac{G'(\omega)}{G''(\omega)}\right)^{2} \right\}^{0.7} \bigg|_{\omega = \dot{\gamma}}$$



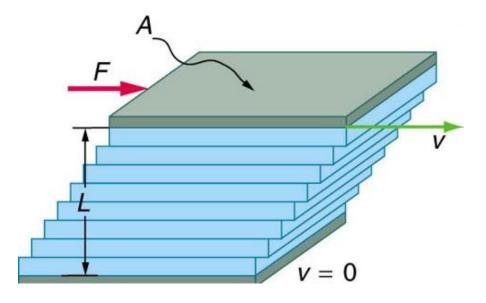
A summary of standard shear flows, deformations and stresses



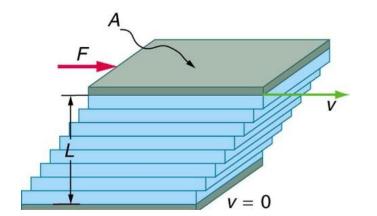


Summary of flows and Material Properties

Flow		Material Function
Steady shear flow	$\dot{\gamma}_{_{yx}} = \dot{\gamma} = constant$	$\eta(\dot{r}), \Psi_1(\dot{r}), \Psi_2(\dot{r})$
Small-amplitude oscillatory shear	$\dot{\gamma} = \dot{\gamma}_0 \cos \omega t$	$\eta'(\omega), \eta''(\omega)$ $G'(\omega) = \eta''\omega, G''(\omega) = \eta'\omega$
stress growth upon inception of steady shear flow	$\dot{\gamma} = 0 t < 0, \dot{\gamma} = \dot{\gamma}_o t \ge 0$	$\eta^{+}(t,\dot{\gamma}_{0}), \Psi_{1}^{+}(t,\dot{\gamma}_{0}), \Psi_{2}^{+}(t,\dot{\gamma}_{0})$
Stress relaxation after cessation of steady shear flow	$\dot{\gamma}_{yx}=\dot{\gamma}_o\ t<0,\ \dot{\gamma}_{yx}=0\ t\geq 0$	$\eta^{-}(t,\dot{\gamma}_{0}),\Psi_{1}^{-}(t,\dot{\gamma}_{0}),\Psi_{2}^{-}(t,\dot{\gamma}_{0})$
Stress relaxation after a sudden shearing displacement	$\dot{\gamma}_{yx} = \dot{\gamma}_o \delta(t)$	$G(t, \gamma_0) G_{\Psi_1}(t, \gamma_0)$
Creep	$\tau_{_{yx}}=0 \ t<0, \ \tau_{_{yx}}=\tau_o \ t\geq 0$	$J(t, \gamma_0)$
Constrained recoil after steady shear flow	$\tau_{yx} = \tau_o t < 0, \tau_{yx} = 0 t \ge 0$	$\gamma_{\tau}(0,t,\tau_0), \gamma_{\infty}(\tau_0), J^0_{\epsilon}(\tau_0)$



End of lecture



Creep and recoil

Complex compliance J^*

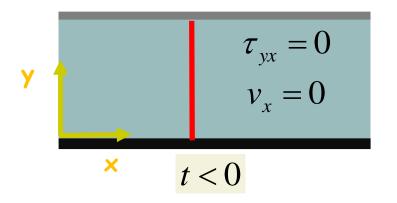
$$J^{*}(\omega) \equiv \frac{1}{G^{*}(\omega)} = J'(\omega) - iJ''(\omega)$$

where

$$G' = \frac{J'}{(J')^2 + (J'')^2} \qquad \qquad G'' = \frac{J''}{(J')^2 + (J'')^2}$$

Shear creep and recoil

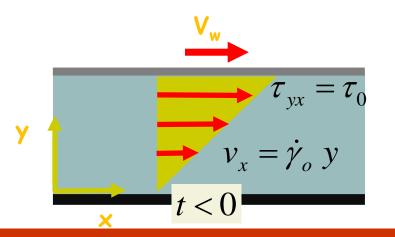
6. Creep



Application of constant shear stress

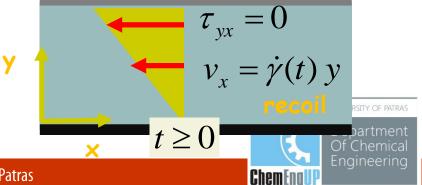


7. Constrained Recoil after steady Shear Flow

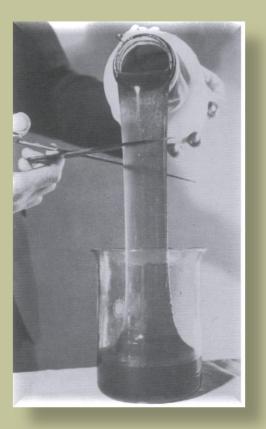


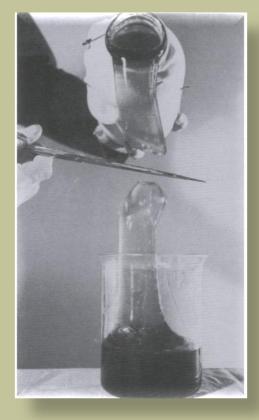
John Tsamopoulos – Fluids Lab – Department of Chemical Engineering – University of Patras

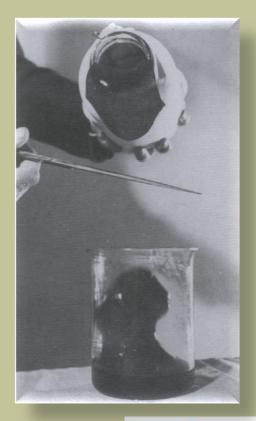
Zeroing of applied shear stress



Viscoelastic recoil







Shear Creep

The shear stress is imposed and we measure the deformation

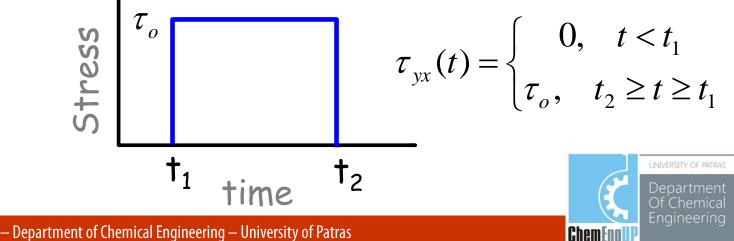
$$\tau_{yx}(t) = \begin{cases} 0, & t < 0 \\ \tau_o, & t \ge 0 \end{cases}$$

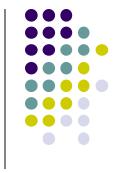
- At steady state, both shear stress and shear rate are constant.
- Thus at steady state (e.g. viscosity curve), the results are the same whether one imposes the shear rate or the shear stress.
- However, the transient behaviors are described by different material functions.

Shear creep and recoil

• Shear creep: A stress starts to be applied at t_1 . The deformation $\gamma(t)$ is plotted as function of time

• Recoil: Stress is zeroed at t_2 , and deformation $\gamma(t)$ is measured as function of time.





Creep kinematic and Material Functions

kinematic

$$\underline{v} \equiv \dot{\gamma}_{yx}(t) \, \underline{y} \underline{e}_x \qquad \qquad \tau_{yx}(t) = \begin{cases} 0, & t < 0 \\ \tau_o, & t \ge 0 \end{cases}$$

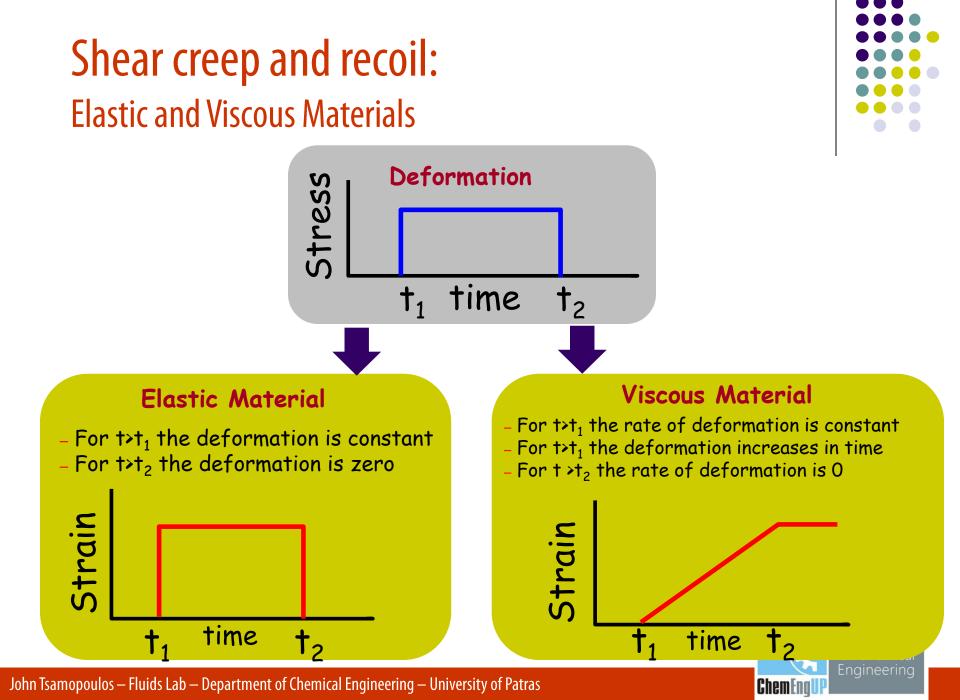
Material functions

$$J(t, \tau_o) \equiv \frac{\gamma_{yx}(0, t)}{\tau_o}$$

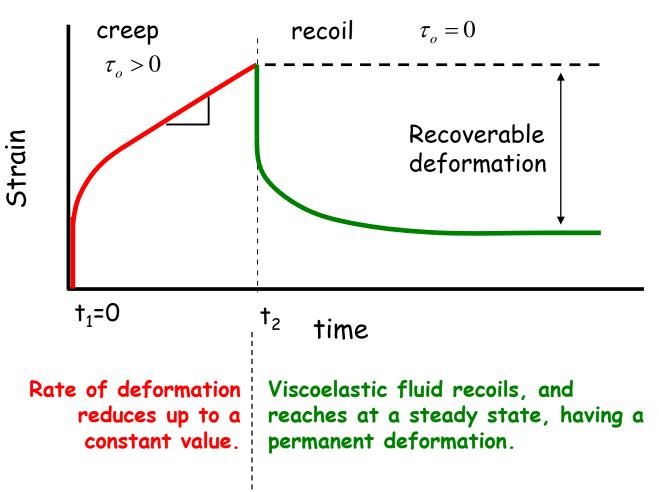
Shear compliance

$$J_r(t',\tau_o) \equiv \frac{\gamma_r(t')}{\tau_o}$$

Recoverable compliance



Shear creep and recoil: Viscoelastic Material



ChemEnal

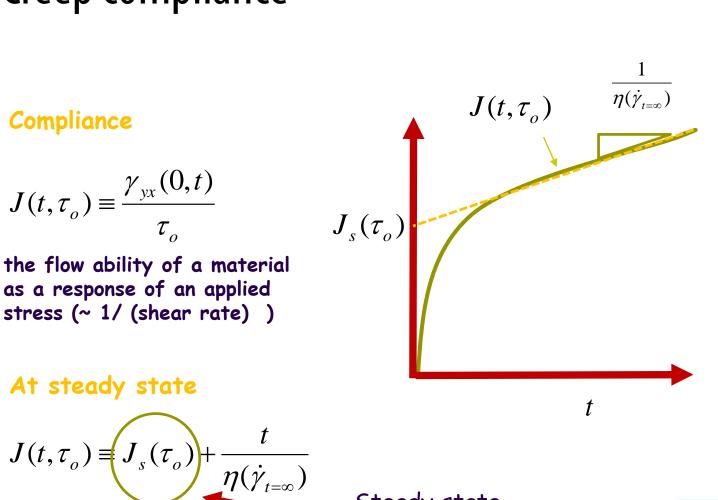
Creep compliance

Compliance

$$J(t,\tau_o) \equiv \frac{\gamma_{yx}(0,t)}{\tau_o}$$

At steady state

the flow ability of a material as a response of an applied stress (~ 1/ (shear rate))

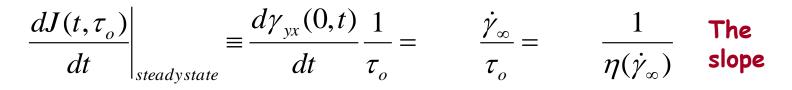


Steady state compliance

UNIVERSITY OF PATRAS Departmen Engineering **ChemEnal**

Creep compliance at steady state

At large times, the compliance exhibits a linear variation



If we integrate it in time, we get:

$$\frac{dJ(t,\tau_o)}{dt}\Big|_{steadystate} = \frac{1}{\eta(\dot{\gamma}_{\infty})} \Longrightarrow J(t,\tau_o)\Big|_{steadystate} = \frac{1}{\eta(\dot{\gamma}_{\infty})}t + C$$

$$J_s(\tau_o)$$

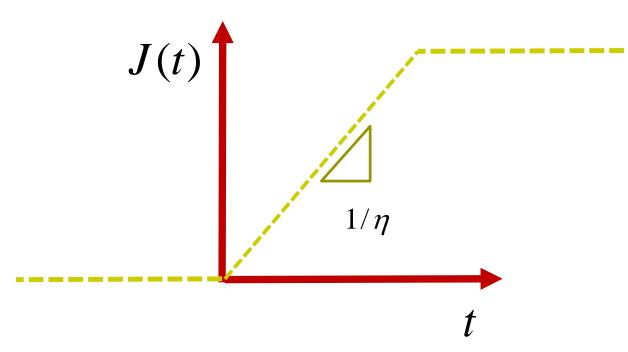
$$J_s(\tau_o)$$

$$J_s(\tau_o)$$

$$J_s(\tau_o)$$

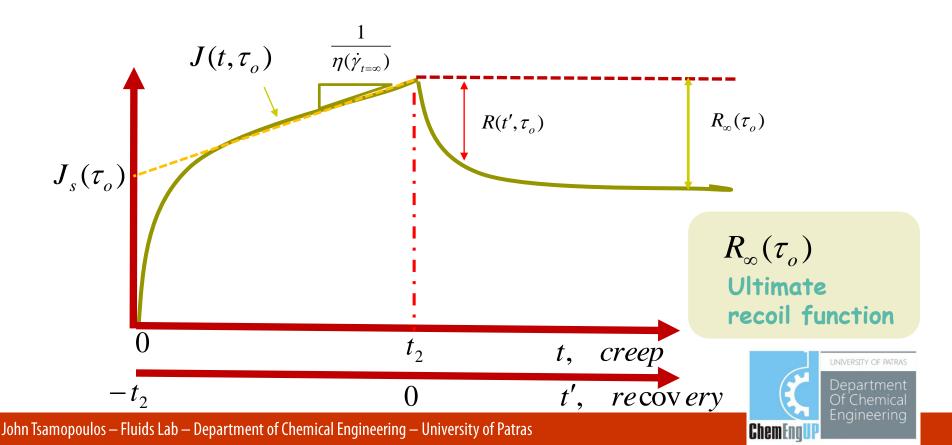
Enaineerina

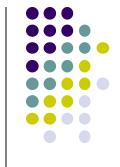
Compliance of a Newtonian Fluid



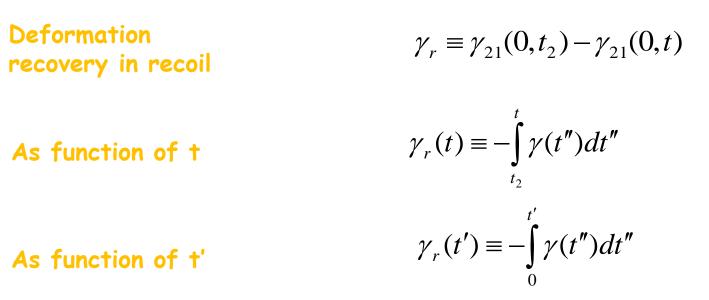
Creep recovery

- After the imposition of creep, the applied stress is zeroed
- Elastic and viscoelastic materials will recoil in the opposite direction of the creep





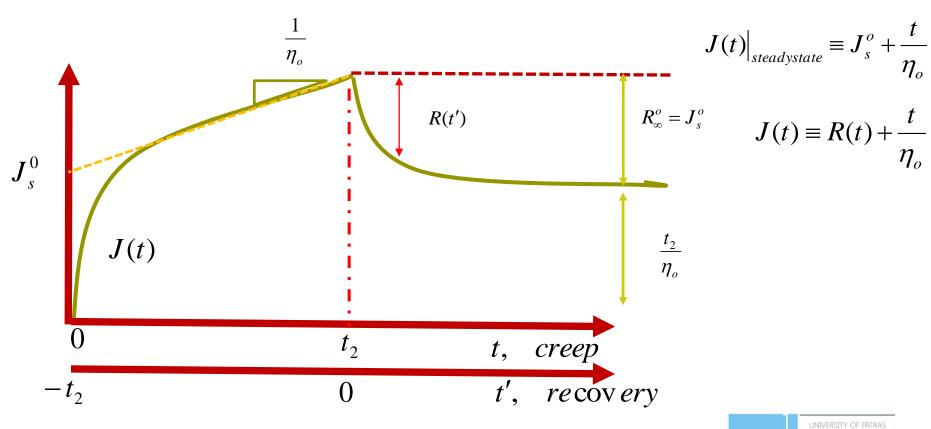
Kinematic and Material Functions



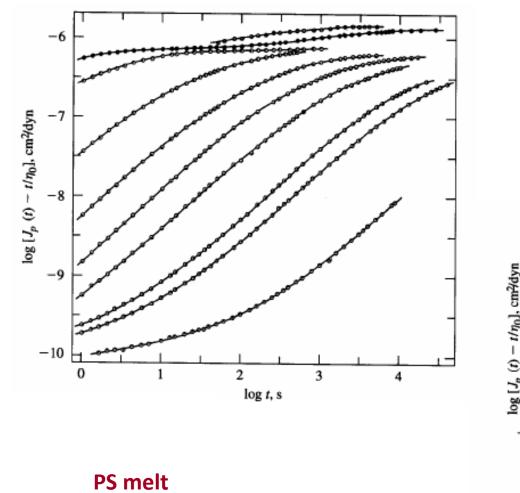
Recoverable compliance or recoil function:

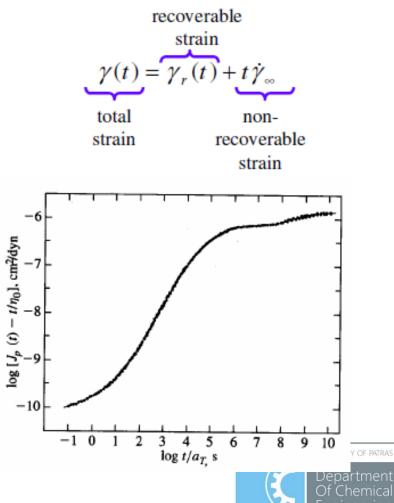
$$J_r(t',\tau_o) = R(t',\tau_o) \equiv \frac{\gamma_r(t)}{\tau_o}$$

Recovery functions

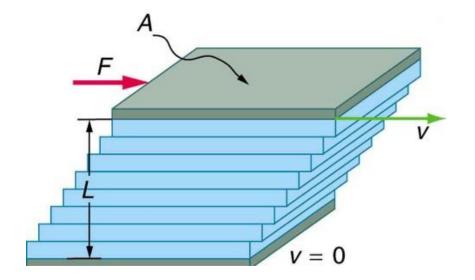


Shear recoil





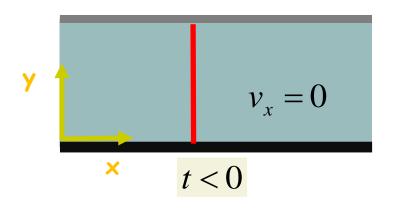
ChemEngUP

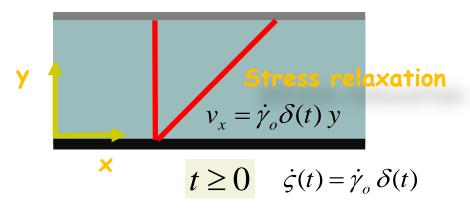


Step stain in shear

Step strain in shear

5. Step strain in shear

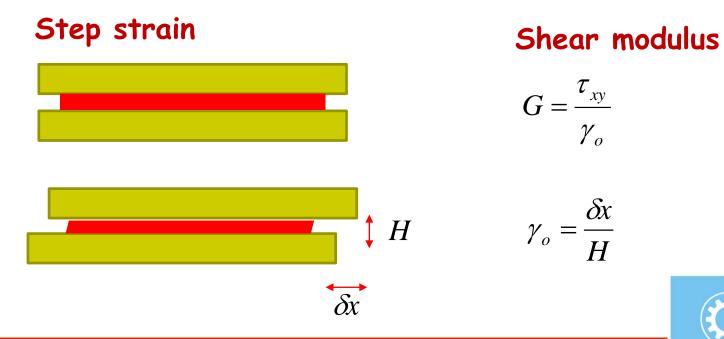




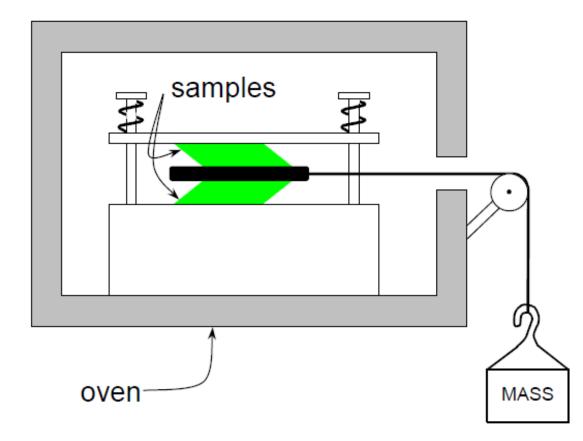
Step strain for elastic materials

ChemEna

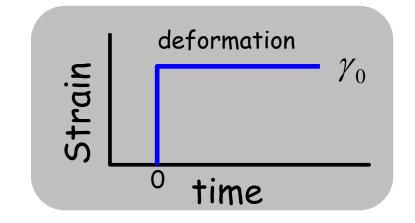
- Deformation is not a flow, unless the material is viscoelastic.
- If we impose an elastic solid in such a deformation, we can calculate the shear modulus as G.



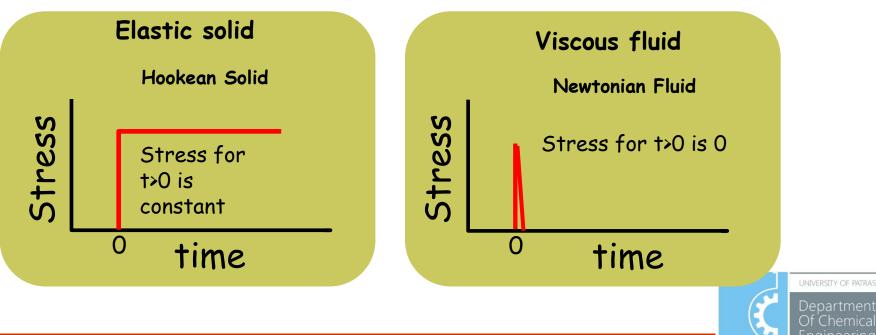
Relaxation experiment for an elastic material



Stress relaxation experiment



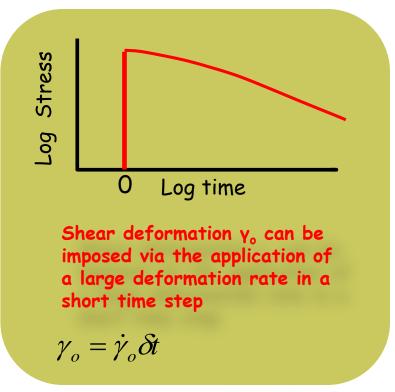
ChemEnaUF



Relaxation experiment for a viscoelastic material

- Shear stress is decreasing • function of time.
- In small deformations (in • LVE), the ratio stress to deformation is only function of time.
- It is called shear modulus • G(†):

 $G(\dagger) = \tau_{yx}(\dagger)/\gamma_{o}$

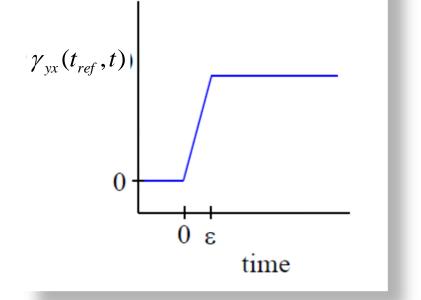


Step strain in shear

Kinematic for step strain in shear

$$\dot{\gamma}(t) = \lim_{\varepsilon \to 0} \begin{cases} 0 & t < 0 \\ \dot{\gamma}_o & 0 \le t < \varepsilon \\ 0 & t \ge \varepsilon \end{cases}$$

Relation between deformation and rate of deformation in shear flow:



 $\frac{d\gamma_{yx}(t_{ref},t)}{dt} = \dot{\gamma}_{yx} \qquad \gamma_{yx}(-\infty,t) = \dot{\gamma}_0 \mathcal{E} \equiv \gamma_0$

Material functions for step strain

Relaxation modulus

 $G(t,\gamma_o) \equiv \frac{\tau_{yx}(t,\gamma_o)}{\gamma_o}$

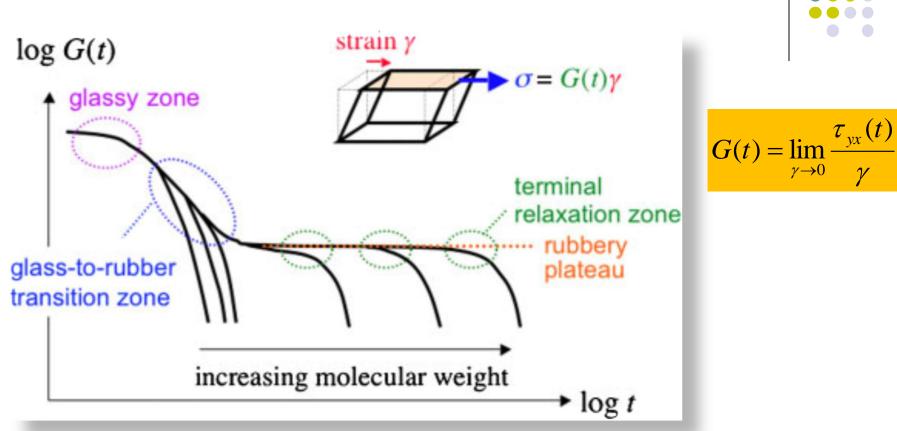
Relaxation modulus for the 1st normal stress difference

 $G_{\psi_1}(t,\gamma_o) \equiv \frac{\tau_{xx} - \tau_{yy}}{\gamma_o}$

Relaxation modulus for the 2nd normal stress difference

 $G_{\psi_2}(t,\gamma_o) \equiv \frac{\tau_{yy} - \tau_{zz}}{\gamma_o}$

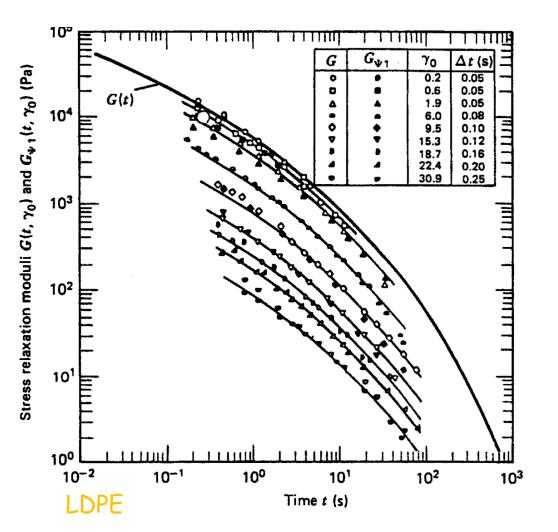
Linear Viscoelasticity



Viscoelastic relaxation modulus of flexible linear polymers.

Polym J. 2009, 41(11), 929.

Experimental observations



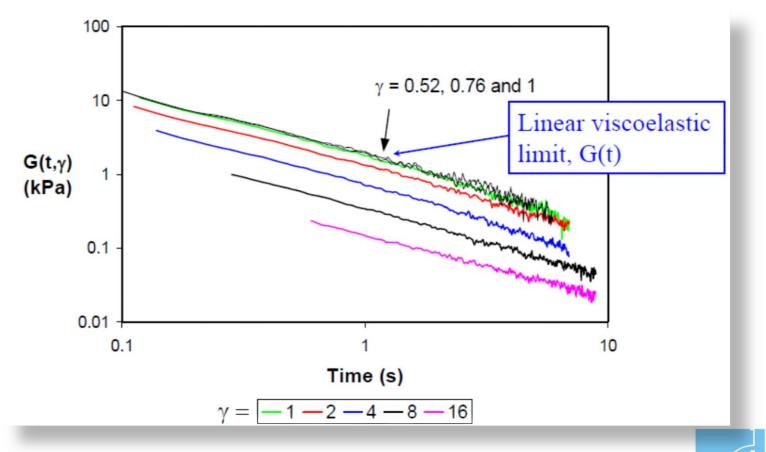
Relaxation Modulus:* $G(t, \gamma_o) \equiv \frac{\tau_{yx}(t, \gamma_o)}{\gamma_o}$

For small deformations $\lim_{\gamma_0 \to 0} G(t, \gamma_0) = G(t)$

Lodge-Meissner's rule:

$$\frac{G(t,\gamma_0)}{G_{\Psi_1}(t,\gamma_0)} = 1$$

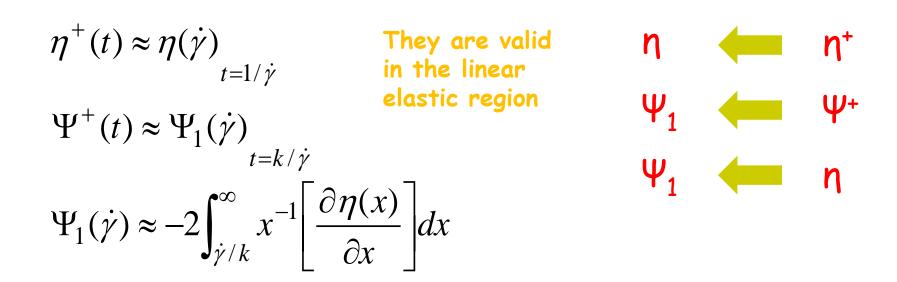
Experimental observations



UNIVERSITY OF PATRAS

Gleissle's rule

Bird, Armstrong, Hassager (1987); Dealy & Wissbrun (1990)



k varies between 2<k<3, and can be calculated with a fitting procedure

